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We study the behaviour of shallow (of order 6 4 1) water waves excited by a 
small (of order 8 4 1) amplitude bottom disturbance in the presence of a uniform 
oncoming flow with either constant or slowly varying Froude number F .  When 
F* G IF- 1le-t 9 1,  the speed and free surface perturbations are of order v = O ( E ) ;  
these grow to become of order 8; if F* = O(1). Therefore, the asymptotic expansions 
of the solution for e+O depend on the order of F*. These expansions are constructed 
in a form which remains valid for times of order v-l; they are then matched to 
provide results which are also valid for all F .  The analytic results exhibit the 
interesting effects of weak nonlinearities including the steepening of waves and 
eventual formation of bores if 6v-i 4 1, the surface rippling due to dispersion if 
8 d =  O(l),  the strong interaction of waves and the periodic generation of upstream- 
propagating solitary waves if F* = O ( l ) ,  etc. All these results are confirmed by 
numerical integration of the governing equations. 

1. Introduction 
This paper concerns the asymptotic solution for small-amplitude waves in shallow 

water over a variable bottom. We study in detail the special case of flow due to an 
isolated small (of order c 4 1) bottom disturbance corresponding to  a bump of 
fixed shape set impulsively into motion a t  either a constant or slowly varying 
dimensionless speed F (Froude number). Here, we define H to be the constant initial 
depth away from the bottom disturbance, 6 to be the ratio of H to L,  a characteristic 
wavelength of the flow, E to  be the ratio of the maximum bottom height A to  H ,  and 
the Froude number F to be the ratio of U-m, the uniform flow speed at infinity 
upstream, to (gH)i .  In  our discussion of slowly varying F ,  we only consider the case 
dF/dt O(e).  A sudden wind flowing over a mountain ridge, tidal motions near 
coastal areas and underwater seismic disturbances are some of the applications of the 
model we consider here. 

The shallow-water equations in the limit of no dispersion for F = const. =+ 1 were 
studied numerically by Houghton & Kasahara (1968). More recently, the behaviour 
of small-amplitude waves with F = const. was discussed in a series of papers 
(Frenzen 1982; Cole 1983, 1985; Akylas 1984; Grimshaw & Smyth 1986; Mei 1986; 
Melville & Helfrich 1987; Smyth 1987; Wu 1987). The work in Frenzen (1982) is 
limited to the non-dispersive problem. That in Cole (1983) is limited to the case of 
steady flow, while the papers of Akylas (1984), Cole (1985) and Mei (1986) concern 
problems similar to ours. Melville & Helfrich (1987) assume a two-layer model and 
Grimshaw 6 Smyth (1986) consider a continuously stratified fluid. I n  all of these 
references, it is noted that the linearized theory breaks down for F x 1 ; the free 
surface height grows with time to  eventually obey a Korteweg-de Vries (KdV) 
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equation with a forcing term depending on the given bottom disturbance. Frcnzcn 
(1982) only derives the non-dispersive limit for this equation. In Wu (1987), this 
forced KdV equation is derived, then solved numerically starting from a Boussinesq 
approximation and assuming unidirectional waves. The interesting feature of the 
mation and assuming unidirectional waves. The interesting feabure of the 
solutions of the forced KdV equation is the periodic production of solitary waves 
which propagate essentially unchanged upstream. It therefore follows that for a 
certain range of parameters steady solutions do not exist for the transcritical flow 
problem (see Miles 1986). 

Mathematically, the problem we have formulated is analogous to ‘transient 
resonance ’ problems for systems of ordinary differential equations with prescribed 
slowly varying parameters as discussed by Kevorkian (1982, 1987). A closer 
connection exists with the problem of transition from supersonic to transonic flow in 
a stratified medium (see $5.3.4 of Kevorkian & Cole 1981). However, in the present 
case, as F - 1 changes sign, the equations do not change type as they do when the 
Mach number passes slowly through unity. The common feature of all the above 
transient resonance problems is the breakdown of the basic asymptotic solution near 
the critical value of a given slowly varying parameter. This necessitates the 
introduction of an ‘interior layer ’ expansion in the transcritical region, then 
matching this expansion with the precritical one in order to continue the solution. 
The essential effect of passage through the transcritical layer is the amplification of 
O ( E )  disturbances to O(&) if W/dt = O(s). 

We begin with the case F = 0, and introduce the Boussinesq approximation in 
which we keep track of the orders of magnitude of ignored terms. Thus, while this 
approximation provides a short-cut in comparison with the ‘exact ’ formulation, it 
is only consistent to a limited order of accuracy which we establish in terms of F ,  6 
and v and the interval in time over which uniformity is desired. We then reformulate 
our problem, give the Boussinesq approximation for arbitrary F ,  and express the 
governing equations in a coordinate system fixed to the bottom disturbance. 

Section 3 gives a summary of results for the case F = const. If F =+ 1, the 
perturbations to  the speed and free surface height are O(e)  so that the solution can 
be expressed in the form of a multiple-scale expansion involving x, t and the slow time 
t”= ~ t .  This expansion is derived to O(s) and remains uniformly valid for t = O(E-’). 
For the linearized problem it is well known (see Grimshaw 6 Smyth 1986) that the 
flow consists of three disturbances. This feature persists for the weakly nonlinear 
problem described by our multiple-scale expansion. The first disturbance is 
stationary over the bump and becomes singular (because of the presence of an 
(F- 1) divisor) as F + 1. The two other disturbances, which we denote as ‘ f and 
g-waves’, obey decoupled KdV equations. The f-waves evolve on the fast scale 
5 = z- (F + 1)  t and slow scale f while the g-waves are functions of 7;r = z- ( F -  1 )  t 
and f. 

In terms of the dimensionless variables that we have adopted, the solution for the 
f- and g-waves depends on the similarity parameter K = a/&. Thus, the asymptotic 
expansion of our solution is constructed in the limit e + O , S + O  with K fixed. As 
discussed in Kevorkian & Cole (1981) and Frenzen & Kevorkian (1985), K measures 
the relative importance of the dispersive and nonlinear effects and occurs as a 
multiplier of the third-derivative terms in each of the KdV equations for the f- and 
g-waves. If K = O( l ) ,  the cumulative effects of weak dispersion and weak nonlinearity 
are equally important. Dispersive effects produce ‘ripples’ in the solution and, in the 
absence of viscosity and surface tension, these ripples persist as t -+ 00. In the special 
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case K = 0 the weak nonlinear effects predominate over the weak dispersive effects. 
In this limiting case the f- and g-waves obey first-order quasi-linear equations which 
describe slowly varying non-dispersive waves which may steepen and break thus 
necessitating the introduction of bores. In  our formulation K = ( H / L ) / ( A / H ) i  if 
F + 1. Therefore, setting K = 0 implies, ineffect, that we assume ( H I L )  + (A /H) t .  In  
Grimshaw & Smyth (1986) a discussion is given of a 'hydraulic approximation' 
corresponding to L + 00 for a finite H .  In a sense this is analogous to our limiting case 

We calculate the f- and g-waves by numerically integrating the corresponding 
KdV equations. These results are then substituted into the leading perturbation 
terms in our multiple-scale expansion to obtain a semianalytic solution to O ( E ) .  This 
solution is significantly easier to calculate than an entirely numerical solution of the 
Boussinesq equations. Our numerical results highlight the importance of K to the 
qualitative behaviour of the solution and provide a numerical assessment of the 
validity of the non-dispersive limit K E 0. If K = 0, the evolution equations are solved 
explicitly and exhibit the typical behaviour of steepening and eventual breaking of 
waves. In this regard, we derive the bore conditions which correspond to the integral 
conservation laws of mass and momentum. Our results are then compared to 
numerical integrations to verify the order of accuracy, the period of uniform validity, 
the time of breaking and the behaviour of solutions with bores. 

An identical program is followed for the case F = const. x 1 .  It was shown by Yu 
(1988) that the condition that dictates the need for a different expansion as F + 1 is 
that  the similarity parameter F* G IF-1)s-i be O(1). In this case the expansions 
must proceed in powers of €4 and depend on a slow time t* = &. It also follows that 
the amplitude of perturbations for the speed and free surface height are O(&), 
therefore the appropriate similarity parameter which measures dispersive effects is 
now K* = S/d. The solution to O(@) can be expressed in terms of a single evolution 
equation which is a forced KdV equation in terms oft* and x. This is the same as the 
result derived from two entirely different points of view by Cole (1985) and Wu 
(1987)' and we confirm the numerical results concerning upstream-propagating 
solitary waves reported there. We also derive explicit analytic results for the non- 
dispersive limit and verify their accuracy with numerical integrations. 

All the results presented in $3 are discussed in more detail in Yu (1988). These 
results provide the background for $4 where the problem of slow passage through the 
critical Froude number F = 1 is discussed. In  this paper we assume that F is a given 
function of i which equals unity a t  some t"= r0. Thus, a typical solution starts in a 
form similar to the one discussed in $3, then evolves slowly to become singular as 
t"+fo. We construct a transcritical expansion for t"x to and match this with the 
precritical expansion. The matching determines the solution in the transcritical 
region completely and this solution is in turn matched with a third expansion valid 
for [ %  r0. We show that the O ( E )  initial perturbations amplify to become O(&) and 
these persist over an interval which lengthens slowly with time as F increases beyond 
the transcritical region. Again, our results are compared with numerical solutions in 
the various regions and are shown to be consistent. 

K 0. 

2. Problem formulation, shallow-water approximation 
2.1. The exuct problem 

We consider an 'ideal' fluid and ignore the effects of viscosity and surface tension, 
and also regard the density as a constant. As this 'exact ' problem is irrotational, it 
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is conveniently defined in terms of a velocity potential which is expressed in 
dimensionless form as $(E,  fj, Q and obeys (cf. equations (5.2.20)-(5.2.23) of Kevorkian 
& Cole 1981) 

In a frame of reference where the flow has zero velocity a t  upstream infinity, the 
initial conditions are 

S 2 $ x x + $ g g = o ;  & < g < & + h ,  --co < z <  +a. (2.1) 

$(Z,fj,o-) = 0;  h(z,o-) = 1-€6(Z,O-). (2.2) 

The imposed bottom disturbance 6((z, f )  is in the form 

B(z+t+);  f >  0, 
- { B(Z);  t < 0, 

b(z,t) = 

Here B(z)  is a prescribed isolated function, i.e. B(s) = 0 if Is1 > i, and tf is the function 
of time defined by 

t+ = F(a7)d7, (2.4) I 
for a given function F(a7) .  This is the Froude number and the small parameter CT 
measures the slowness of variations of F on the Lscale. The ‘slow time’ is t”= d, and 
in this paper we only study the case u = e. The case u = e2 is also interesting and is 
analogous to the problem of very slow passage through resonance in ordinary 
differential equations (cf. $ 4  of Kevorkian 1982 and $5.3 of Kevorkian 1987). 

The boundary conditions on the bottom and free surface are (cf. equations 
(5.2.21)-(5.2.23) of Kevorkian & Cole 1981) 

$u = on y = €6, (2.5) 

$t++(@ + $;/d2) + h+ €6- i = 0 on fj = eb+ 6, (2.6) 

9, = 62[(h+€6))r+~z(h+e~))2] on g = &+E. (2.7) 

2.2. The Boussinesq approximation 

An exact solution of (2.1)-(2.7) is out of reach because of the nonlinear boundary 
conditions, and one is led to seek solutions for the limiting case of small disturbances, 
0 < B 4 1. A further approximation which still retains all the essential features 
of the nonlinear problem is provided by the ‘shallow water’ or ‘long wave’ limit 
0 < S e 1.  The ‘richest’ approximation in this case has 6 = O ( d ) ,  say 6 = KV; as 
discussed in $5.2 of Kevorkian & Cole (1981) for the case of surface disturbances 
and a flat bottom. Frenzen & Kevorkian (1985) discuss the case of surface disturb- 
ances over a spatially slowly varying bottom. 

For an arbitrary isolated bottom disturbance of order e of the form (2.3) and (2.4), 
Yu (1988) shows that 6 = O(&) = K V ~  is still the appropriate choice leading to  the 
richest equations and that the Boussinesq approximation corresponding to (2.1)-(2.7) 
is now given by E,+ ( ~ T E ) ~  = op4), ( 2 . 8 ~ )  

(2.8b) cr+ t-it-iz + (6 + sli), = - gs*hZK- ye6z,+ o( y3 ) , 

with initial conditions 

t- i(Z,O) = 0;  L ( Z , O )  = 1 - € b ( E , O ) ,  (2.8c, d )  

The solution of (2.8) corresponds to the solution of (2.1)-(2.7) in the following 
where 6((z,t) is prescribed in the form (2.3) and (2.4). 
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t' 

FIGURE 1. Geometry in the (z,y)-coordinate system attached to an isolated bump of fixed 
shape with a given F(et)  at z = - CO. 

asymptotic sense: if we identify h in both cases and denote ti as the average 
horizontal component of velocity, i.e. 

then both problems have the same governing equations for the asymptotic 
expansions of Q and A to the orders indicated by the error terms. I n  the non- 
dispersive limit K = 0, the bore conditions associated with (2 .8a,  b )  are the same as 
those for a flat bottom, i.e. 

- [EE] [a%+p] 
[hl [ah] 

c=-= (2.10) 

(see Stoker 1957). Here, 6 is the bore speed dz/d7;, and [ * ]  denotes the jump of a 
quantity across the bore. 

In some applications, it is more convenient to study the solution in an (x,t)- 
coordinate system fixed to the isolated bump as shown in figure 1 .  The transformation 

- relations are 
z = z + b ( n ) d r ,  t = t ,  

0 
(2 .11a)  

a(Z, f )  = U ( X ,  t )  -F(st) ,  X(Z, f )  = h(z ,  t ) ,  (2.11b) 

(2.1 1 c )  b(Z,t) = B ( Z ) ,  

and the system (2.8) becomes 

h,+(uh),  = 0(v4), (2.12a) 

(2.12b) 
Ut  +uu,+(h+EB), = s f i ; : - ~ s 2 [ F 2 h , , , + 2 ~ h , , t + h , , t ] - ~ 2 e [ ~ 2 B , , , + ~ h , , ] + O ( v 3 ) ,  

u(x,O) = F ( O ) ;  h(z ,O)  = l -&(X) .  (2.12c) 

Here F depends only on f, and B depends only on x. 

3. Constant Froude number 
3.1. Non-critical case, F $: 1 

As discussed in Kevorkian & Cole (1981), for the case F = 0, E = 0, the solution of 
(2.12) can be derived in the form of a multiple-scale expansion with respect to the 
small parameter v and the two timescales t and t"= vt. 
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We assume that v = O ( E ) ,  say v = E for simplicity, and show that this leads to a 

consistent expansion as long as F + 1, i.e. the surface disturbances are of the same 
order as the prescribed bottom disturbance. We also set 6 = K E ~  corres onding to the 
observation made in $ 2  that the richest equations result for 6 = O(vz). 

Thus, u and h are functions of x,t, the small parameter E ,  and the two fixed 
parameters F and K .  We assume? that they have the following multiple-scale 
expansions : 

u(x, t ; E ,  F, K )  = F + eul(x, t ,  t"; F ,  K )  + E'u~(x ,  t ,  t"; F, K )  + O(e3) ,  ( 3 . 1 ~ )  

h(x, t ; 6, F, K )  = 1 + shl(z, t ,  t"; F, K )  + s2h,(z, t ,  t"; F, K )  + O(e3),  (3.lb) 

P 

with t"= st. 
The solution for u and h correct to  O(B) has the form 

1 
{F  - 1  

h(x, t ; E , F ,  K )  = 1 + E ,--B(z) +tfl(t, t";F, K )  +b1(~, L;F, K )  (3.2b) 

where 5 and 7 are the characteristic fast scales 

6 = x-(F+ 1 )  t ;  7 = x-(F- 1)  t .  (3.3) 

Consistency conditions on the differential equations to O(E') require that fi and g1 
satisfy the following KdV equations : 

fli+If1fl,+BKt?fiSSC = 0 ;  91f-Ql 91,,-iK291,,,, = 0. (3.4a, b )  

These are the same evolution equations that one obtains for the case of surface 
disturbances over a flat bottom (see (5.2.82) of Kevorkian &, Cole 1981). The initial 
conditions (2.12 c) imply that 

If F is not close to unity, the uncoupled evolution equations (3.4) subject to the 
initial conditions (3.5) define fl and g1 uniquely. Once these functions have been 
derived, the solution for u and h correct to O ( E )  is available from (3.2). Therefore, the 
solution to O ( E )  consists of three non-interacting components - one that is stationary 
over the bump indicated by a constant times B(x) ,  a wave propagating to the right 
indicated by fl,  and a wave propagating to the right or left (depending upon F > 1 
or F < 1 )  indicated by gl. The singularity as F + 1 is evident in the initial condition 
for g1 and in the disturbance which remains stationary. This singularity implies that 
the assumed expansions (3.1) are not uniformly valid near F = 1 .  We shall discuss the 
solution for F x 1 in $3.2. 

3.1.1. The non-dispersive probiem 

For K = 0, the solution to  the corresponding evolution equations (3.4) has the 

(3.6a, b) 

t Actually, the uI and hi in (3.1) should also depend on the slower scales s2t, s3t, etc. However, as 
we are only interested in results accurate to O ( E ) ,  the dependence of the solution on s2t, . . . is not 
pertinent ; to determine this dependence in ul and h,, for example, one would have to consider the 
O(e3) terms in (2.8). 

compact form F F 
f =-- m o )  ; g1 = - p - q W o L  

I F + l  
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where 5, and yo are constants along the respective characteristics, defined implicitly 

B(yo) t" = 0. (3.6c, d) 
3F 

B(Eo)f= 0;  qo-y+- 
3F 

50+4(F+1) 4(F - 1) 

The solution of (3.6) is unique as long as neither of the two families ( 3 . 6 ~ )  and 
(3.6d) has an envelope, The details of how to fit a bore when characteristics intersect 
are similar to  those discussed in $5.1.2 of Kevorkian & Cole (1981) for the analogous 
problem in acoustics. In the present case the exact bore conditions (2.10) imply the 
following conditions for d€Jdf and dyldt": 

(3.7a, b) 

where the f superscripts indicate values on either side of a bore. Therefore the two 
physically consistent divergence forms of the evolution equations for f, and g1 are 

(3.8a, b )  

Although (3.7) gives the two bore speeds to O(s), bore trajectories in the (x, +plane 
are only defined to O(1) for large time t (see Yu 1988). 

(fh+ (if 3 6  = 0 ; (g1)r- (%3, = 0. 

For the disturbance due to the parabolic bump 

we compute 

where 

(3.10) 

(3.11) 

Thus, the initial value of fi propagates unchanged along the straight characteristics 
defined by (3.11). To expressf, as a function of 6 and t", we solve the quadratic (3.11) 
for to and use the root (the other root is spurious) 

- 1 + [ 1 +  16cf(E+cf)$ 
8ct" Eo = 1 

where we have introduced the notation 

c = 3F/4(F+ 1). 

Using ( 3 . 1 2 ~ )  in (3.10) defines fl in the ([,f)-plane: 

The solution is unique as long as 

- -  F + l  0 < t < to = $c = - 
3F ' 

( 3 . 1 2 ~ )  

(3.12 b )  

(3.13) 

(3.14) 

The results for the g, wave can be derived from the above by noting that the two 
problems are equivalent under the transformation to --f -yo, E .+ - y, f +  f, c -+ d, where 

3F d is the constant 
d = -  

4 ( F - l ) '  
(3.15) 
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0 

FIGURE 2. Evolution of the free surface for short times with F = 2, B = 0.1. 

3.1.2. Numerical solutions, discussion of results 
We first verify the accuracy of the asymptotic results for the non-dispersive case 

(K z 0) by numerically solving the exact problem. We rescale the characteristic 
variables and solve the equations by an explicit finite-difference method (see Yu 
1988). The case F = 2,s  = 0.1 provides a stringent test of the asymptotic validity of 
the theory for times up to about t = 10, which is certainly O(e-'). According to (3.14) 
the fl wave breaks a t  t = 5 and the g1 wave breaks at t = t .  Both of these breaking 
times are in the interval of our numerical results, and we are able to compare 
solutions with well-developed bores. 

Figure 2 gives a perspective view of the short-term evolution of h with time. The 
2- and t-axes are measured along the base of the diagram, and the various curves 
drawn a t  each time represent h- 1. I n  figure 3, we show the numerical (solid curve) 
and theoretical (dashed curve) values of h as contributed by thef, and g1 waves at 
t = 10; the stationary disturbance over the bump is not shown. The location of the 
bore for the fl wave is indeed accurately predicted, and so are the values of h. The 
maximum error for all points away from the bore is 0.7 x lop2 while the maximum 
error near the bore is 1.25 x As for the g, wave, the maximum error in h away 
from the bore is still less than lo+, while near the bore it is 8 x and this is 
entirely due to the error in the bore location. In  fact, the time elapsed from the 
formation of the bore for the g, wave is 8.3 = 0.836-' and may be regarded as O(e-l). 
As mentioned earlier, our results only predict the bore location for times of order 
unity from the time of the bore formation, and the above accuracy is therefore 
Consistent, 

For the dispersive case K =k 0, we numerically integrate the two evolution 
equations (3.4) and use the results in (3.2) to compute u and h. The key statement 
of the numerical algorithm is 

This method is always stable. For the method given in Copeland (1977), the time step 
At is very restrictive (At - (Ax)'). If the condition At 6 ~ . ~ ( A X ) ~ / K ~  is satisfied, the 
algorithm (3.16) is consistent. 
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X 

FIGURE 3. Free surface at a large time ( t  = 10) for F = 2 , ~  = 0.1. The solid curve shows the 
numerical result. 

1 1 I I I I I 

- 1  4 9 14 19 24 29 
X 

FIQURE 4. Free surface at t = 7 .5 ,F  = 2 , ~  = 0.1 for various K ~ .  

The role of the dispersive term in (3.4) is shown in figure 4, where we have 
calculated h as a function of x at t = 7.5, F = 2 and the four values of K~ = 0, 0.1 ,0.5, 
1.0. For K~ = 0, we have the three isolated disturbances already seen in figure 2. 
As K~ increases, ripples of increasing amplitude develop, primarily in the interval 
between thef, and g1 waves. The three main disturbances are easy to identify for 
KI = 0.1 and even for K~ = 0.5. However, for K~ = 1.0, the ripples have roughly the 
same amplitude as the fi,g, waves, and only the disturbance over the bump can be 
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distinguished separately. As is evident from figure 4, it  is not reasonable to ignore the 
dispersive terms if K~ is any larger than 0.1. 

Of course, one has to also take viscous effects into account in a physically realistic 
model. In a model with no dissipation such as ours the dispersive solutions need not 
tend to the non-dispersive ones as K~ --f 0 (see also the discussion a t  the end of $3.2). I n  
fact the question of what happens as K~ + 0 is only meaningful in a setting including 
dissipation. This question is discussed in $13.15 of Whitham (1974) for a 
mathematical model of the KdV equation with an added second-derivative term to 
simulate viscous effects. A systematic treatment of viscous effects in the actual 
physical problem of water waves is very difficult. However, based on the linear 
theory (e.g. see Mainardi & LeBlond 1987 and the references cited there), one expects 
viscosity to attenuate the amplitude of disturbances and to suppress the ripples 
introduced by dispersion. Therefore, in a sense, dispersion and viscous effects tend to 
cancel, and the dominant flow behaviour is expected to  be governed at least 
qualitatively by the present model with K~ = 0. 

3.2. Critical case, F x 1 

It was pointed out in $3.1 that the multiple-scale expansion (3.2) breaks down for 
F x 1. The basic reason for the non-uniformity can be traced to the contradictory 
implicit assumptions (when F x 1) that  : (i) surface disturbances are O(s)  and (ii) that 
disturbances propagate with near characteristic speeds F + 1 and F - 1.  When 
F x 1 one of the characteristic speeds is very small, i.e. the associated disturbance 
remains stationary over the bump. This in turn implies that perturbations over the 
bump grow with time, in contradiction to the assumed order of magnitude of the free 
surface perturbation. 

An order of magnitude analysis shows that the following rescalings are appropriate 
for F x 1 (see Yu 1988): 

F-1 =e$F*;  v = & ;  S = & K * ;  t * = & .  (3.17) 

The multiple-scale expansions for u and h then take the form (cf. (3.1)) 

u = 1 +&[F*+u:(x,t,t*;F*,K*)]+~u;(x,t,t*;F*,K*)+O(& ( 3 . 1 8 ~ )  

h = l + & h T ( ~ , t , t * ; F * ,  ~ * ) + ~ h ; ( z , t , t * ; F * , ~ * ) + 0 ( & ) .  (3.18b) 

We find that u and h depend only on g: to O(d) and are given by 

U ( x , t ; c , F , K )  = 1 +d[F*-&:(X,t*;F*, K * ) ] + o ( € ) ,  ( 3 . 1 9 ~ )  

h ( x , t ; e , F , ~ )  = l + @ q : ( ~ , t * ; F * , ~ * ) + O ( e ) .  (3.19b) 

Here gr satisfies the evolution equation 

(3.20) 

with initial condition 

gr(x, 0;  F*, K * )  = 0. (3.21) 

It is shown in Cole (1985) that, even for the case of deep water (8 = l),  the 
appropriate evolution equation if F x 1 is the forced KdV equation (3.20) which is 
solved numerically there for the special case of a delta-function bump. This equation 
is also derived in Wu (1987) then solved numerically starting from the Boussinesq 
approximation and assuming unidirectional flow. In  the remainder of this section we 
give a summary of results which parallel those in Grimshaw & Smyth (1986). 
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FIGURE 5. Free surface at t* = 1 for K* = O , E  = O.Ol,P* = 1.5 > (3/2$. Steady solution over the 
bump. The solid curve shows the numerical result. 

(i) The non-dispersive problem. If K* = 0, the problem can be expressed in the 

w ~ ' + w w ~ = - ~ B ~ ;  w(x,O;F*) =F*, (3.22a, b) 
compact form 

through the new variable 

w(z , t* ;F*)  F*-&?(x,t*;F*,O). (3.23) 

The physically consistent divergence form and associated bore condition for this 
equation are 

Wt*+(;W2)z = -pz; - - - i (W+ + w-). (3.24) 

A complete explicit solution for the case K* = O,B(x) = 1 -4x2 can be found in Yu 
(1988). Representative charcteristic curves shown there are in qualitive agreement 
with the numerically calculated curves given in figure 2 of Grimshaw & Smyth 
(1986). The nature of the solution depends on whether F* 2 (3/2); as shown in figures 
5 and 6 corresponding to P* = 1.5 > (3/2); and F* = 1.15 < (3/2)t respectively. In 
particular, a stationary solution over the bump is possible only if F *  > (3/2);. 

(ii) Numerical Results. The solid curves in figures 5 and 6 show the numerical 
solution of the exact non-dispersive equations. The error in both cases is of order 
e = 0.01 a t  the time t = 10 = O(e-a), as expected from the order of accuracy of the 
theory. 

We use the same algorithm (3.16) as in $3.1.2 to solve the forced KdV equation 
(3.20) for g:. The results for h = 1 +dg: are shown in figure 7 calculated for the times 
t* = 6, 12, 18, 24 and the case K* = 1,F* = 0. These are in qualitative agreement 
with the numerical results calculated for a delta-function bump in Cole (1985) for the 
case of 6 = 1. Our results also agree with the numerical solutions given in Wu (1987). 
One observes the periodic production of solitary waves which propagate essentially 

dx 
dt* 
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FIGURE 6. Free surface at t* = 1 for K* = O , E  = 0.01, F* = 1.15 < (3/2);. No steady 
over the bump. The solid curve shows the  numerical result. 
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F I G ~ J R E  7.  Free surface at various t* for K* = 1, E = O.oi,F* = 0. 

unchanged upstream. There is a region of h < 1 just downstream of the bump which 
grows in width as time increases. Just  downstream of this region we see large- 
amplitude nonlinear waves which gradually decay in amplitude further downstream 
and tend to become linear. A further study shows that these large-amplitude waves 
are in fact solitary waves with different bases and they propagate downstream as if 
there were no other waves around. The starting time for the generation of solitary 
waves increases as F* increases and so does the production period of these solitary 
waves. 

To conclude this discussion, we illustrate in figure 8 the role of K* in the solu- 
tion for the conditions used to calculate figure 6, i.e. F = 1.1 15, e = 0.01, t = 10 
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FIGURE 8. Free surface at  t* = 1, E = 0.01, F* = 1.15 for various K * ~ .  Compare enlarged view 
with solution for K* = 0 given in figure 6. 

(F* = 1.15, t* = 1.0). If K* = 1.0, the solution downstream of the bump has a signi- 
ficant oscillatory behaviour which is absent in the limiting case K* = 0 given in figure 
6.  As K* decreases, the amplitude and wavelength of oscillations decrease. Note the 
close correspondence between the surface profile shown in figure 6 and the enlarged 
view of the solution over the bump for K * ~  = 0.1. For this value of K * ,  the dispersive 
effects are negligible everywhere except just upstream and just downstream of the 
bump. However, the limiting solution of the dispersive problem as K~ + 0 is seen to 
differ significantly from the non-dispersive result in the vicinity of the two bores. 
Again, a systematic treatment must also include the effects of dissipation. 

4. Variable Froude number, S(r) 
I n  this section we consider flows with a prescribed F(f) over an interval in fwhich 

contains the oritical time t", a t  which F ( f o )  = 1. Now, a single expansion cannot define 
the solution for all Land we construct and match three different expansions, one valid 
in the precritical region ei < (t",-Q, the second valid in the transcritical region 
(f-t",) = O(&, and the third valid in the postcritical region €4 4 (t"-fo). This 
situation is analogous to that of 'transient resonance ' for systems of ordinary 
differential equations as discussed in Kevorkian (1987). It is also quite similar to the 
problem of transition from supersonic to  transonic flow as discussed in $5.3.4 of 
Kevorkian & Cole (1981). 

4.1. Precritiml expansion, ei < ( fo - f) 
It is more convenient to calculate the solution in terms of the coordinate system for 
(2.8) in which the bump moves with speed F(t"). Thus, we wish to solve the initial- 
value problem (2.8) with 6 = B(l+t+)  as defined in (2.3) and (2.4). 
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We expand ii and A in the multiple-scale form : 

U(Z, c E ,  K )  = E ~ Z ,  r, t"; K )  + E 2 t i 2 ( ~ ,  t"; K )  + 0(s3), (4.1 a )  

~ ( 2 ,  e ,  K )  = 1 + ~ E ~ ( z ,  t; t"; K )  + e ' j i l ( ~ ,  t"; K )  + 0 ( ~ 3 ) ,  

where t" = ef = et, and find that ti1 and El have the form (cf. (3.2)) 

(4.16) 

( 4 . 2 ~ )  

(4.26) 

The singularity at f =  fo (where F(fo)  = I )  is exhibited by the first term on the right- 
hand sides of (4.2). Here, in contrast to the case F = const. % 1, the solution is 
initially well behaved; i t  only becomes singular as t"-+fo. Actually, the matching of 
solutions to be discussed in $4.2 shows that (4.2) is valid for (L0-t") % E:;  this 
expansion only becomes singular for (t"-f0) = O ( d ) .  It will also be shown in $4.2 that 
the singular terms in a1 and El match with corresponding terms in the transcritical 
solution. 

Consistency requirements on the solution to O ( 2 )  provide the evolution equations 
for& and q1 in a form identical to (3.4), i.e. 

f l , + $ f ; & + a K f l m =  1 2-  0;  ~ ~ ~ - w ~ ~ ~ ~ - ~ ~ 2 ~ l w ~  = 0. (4.4a, b )  

These are to be solved numerically for the initial conditions, 

F(o)  B ( Z ) ,  (4.5a, 6) F(o)  B(z ) ;  gl(z,O;K) = --- 
- 

F(0)  - 1 
f l ( z , o ; K )  = -- 

F(0) + 1 

that result when (4.2) is substituted into (2.8c, a). 
For the non-dispersive limit K 5 0, we can solve (4.4) explicitly and find 

F(o) B(p); ql(v, t"; K )  = --B(q*), F ( 0 )  (4.6a, b)  
F(0)  - 1 

&(C t"; K )  = -___ 
F(0)  + 1 

where g* = const. and Tj* = const. are the characteristic curves defined in the implicit 

In the coordinate system (2.11) attached to  the bump, we have 

where the characteristic curves are now defined by 

(4.9a) 

(4.96) 
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For the purposes of matching the above solution with the one valid in the 
transcritical region, we note that the characteristic variables, 8, and R, are given by 

( 4 . 1 0 ~ )  

(4.10b) 

4.2. Transcritical solution, It"-t",l = O(&) ; matching 

Based on the order of magnitude analysis for the case F = const., we conclude that 
6 and [must be rescaled as follows: 

(4.11a, b )  

where p1 is to be determined by matching the characteristics of the precritical and 
transcritical solutions. 

Assuming that F ( f )  is analytic near t" = to and that F -  1 has a simple zero there, 
we have the expansion 

(4.12) 

8 = &*; t* = 2[(t"-i,)+p,(t"-t"0)~], 1 

~ ( 5 )  = 1 +al(f-t"o) +uz(t"-t"o)z +o((t"-t",)3)), 

with known constants a, =+ 0 and a2. Expressing P(t") in terms oft* gives 

F ( f )  = l+alt*€++O(E). (4.13) 

In view of (4.13), we seek a solution in the following multiple-scale form (cf. (3.19)): 

U(2 ,  t ; E ,  K )  = 1 + &a, t* + U:(2, t ,  t* ; K * ) ]  + EU:(X, t, t* ; K * )  + O(Eg), (4.144 

h(z,  t ; E ,  K )  = 1 + d h : ( x ,  t ,  t * ;  K * )  +eh,*(x, t ,  t * ;  K * )  + O(d) ,  (4.14 b )  

where K* = E ~ K .  We find that u: and hT have the form 

U: = if:([, t* ; K * )  -&:(X, t* ; K * ) ,  ( 4 . 1 5 ~ )  

h: = af:(c, t * ;  K * )  +$:(2, t * ;  K * ) ,  (4.15b) 

where [ = x-2t. Consistency of the solution to O(s) then requires that f: and g: 
satisfy the following variable-coefficient KdV equations : 

f : , .+(alt*+ff:)f: ,+~K*lf:~~ = 0, ( 4 . 1 6 ~ )  

(4.16b) 9:,.+ (a, t*-%:,g:,-~~*":,,, = 4. 
Changing the dependent variable in (4.16 b )  according to 

w = a  t*--3 * 
1 a1 

gives the forced KdV equation 

(4.17) 

W t .  + ww, - ~K*2w,., = a, -:B,, (4.18) 

and a similar result follows for f:. 
One must keep in mind that now the solution of (4.18) is only valid for a short 

period of order €5 in t"near f0 (or for a period of order 6-1 in t ) .  One of the interesting 
features discussed in $3.2 for the solution of the forced KdV equation (3.20) is the 
periodic generation of upstream-travelling solitary waves a t  a rate which is O(1) in 
t*. In  the present case, this train of solitary waves will not have time to fully develop 
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if a, is not small because the transcritical solution only lasts for a period of order 
unity in t*. 

A complete description of the flow as F evolves from its initial value through 
F = 1 requires the matching of the two solutions of (4.4) and (4.18). A systematic 
matching requires that one be able to derive the asymptotic behaviour of the 
precritical solution as f +  Lo, and the asymptotic behaviour of the transcritical 
solution as t* + - co. The case where K* + 0 is discussed with a specific example in 
55.4 of Yu (1988). Here we concentrate on the non-dispersive problem K* = 0 for 
which explicit results can be derived. 

The solution of (4.16) for K* = 0 has the form 

f:(Y, t*;O) = @*(s-Cf:t*-;a,t*”, 

g:(x, t* ; 0) = t [ U ,  t* - w(2,  t * ) ] ,  

( 4 . 1 9 ~ )  

(4.19b) 

where the definition of w depends on x (cf. (4.18) and (3.9)). For 1x1 < we have 

w2 = c,+2a,z-~(1-44s2); c, = const., (4.20 a) 

on the characteristic curves defined implicitly by 

e-d6t* = c,; c2 = const. (4.20b) 

If 1x1 > 4, we have 

w = a,t*+c, on w2 = 2a,x+c4; c3,c4 = const. (4.21 a ,  b) 

In contrast to the case F = const., where the integration constants were defined by 
the initial conditions, we must now match the transcritical and precritical solutions 
in order to determine cl, . . . , c4, and this is discussed next. 

Again it is useful to express the results in terms of the characteristic variables 
S: = h:+u: and R: = hf-u:, and in this case we simply have 

S:(z,t,t*;O) =f:; R?(x,t,t*;O) = g:. (4.22a, 6) 

As the transcritical solution has not been determined beyond O ( d ) ,  we can only 
match to this order. This consists of matching ES, as given by ( 4 . 1 0 ~ )  with &S: to 
O(&) along the characteristics which correspond to = const. in the precritical 
region. Also, we must match ER, as given by (4.10b) with eiR: along the 
characteristics which correspond to q* = const. 

We follow the procedure discussed in Kevorkian & Cole (1981) and introduce the 
matching variable t ,  defined by * I  

t - t o  
t ,  = - e ’  (4.23) 

where a is a constant in some overlap domain 0 < a, < a < a, < 2 to be determined. 
(There is no loss of generality in adopting this choice o f t ,  as opposed to letting the 
denominator of (4.23) be a general function of E . )  The various time-scales can then 
be expressed in terms oft,: 

(4.24a, b)  

F(ET)~T = t,f+8-1t,+~za-’a, t g + ~ 3 a - 1 a 2 t ~ + O ( ~ 4 a - 1 ) ,  (4 .24~)  

(4.24 d )  

t = to + Ea-9,  ; t“ = fo + Eat,, 

t* = e-it, + p, P - J t g ,  
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where we have used the notation 

t,f = r F ( n ) d r ;  to = $. (4.24e, f) 

Consider first the matching condition on eSt and s& along the p = const. 
characteristics, i.e. 

lim Es, x, - + ~ l t , ,  fo + et, ; o - €48: x, + sa-lt,, @-it, + p1 s2+~ ; o = 0. 

(4.25) 

Since X, is not singular as f+ fo, eSl/d = O(& -+ 0 as e+  0, with t, fixed. Therefore, we 
must set Sy = 0 in this limit, and this just gives the trivial solution : f :([, t* ; 0) = 0. 
With this result, the argument of @* as given by ( 4 . 1 9 ~ )  is z- 2t- $, t *2.  Thus, using 
(4.24a, d )  we see that in the matching domain the characteristics associated with f: 
are the curves 

~ - 2 s " - ~ t ~ - $ ~ ( s ~ ~ - ~ t ~  + 2p1 e3OL-lt:) + O(s4"-l) = c5 + 2t0 = const. ( 4 . 2 6 ~ )  

The curves g* = const. associated with the precritical solution for X, have the 
following form when we use (4.24) in ( 4 . 9 ~ ) :  

z-2sa-lt a -h 2 1  s2a-1t2-kx u 3 2  ~ ~ ~ - l t ~ + O ( e ~ ~ - ~ )  = E*+t:+t ,  = const. 

Matching ( 4 . 2 6 ~ )  with (4.263) to O ( d )  gives 

t,fixed e-to 'I ( f  1 L 11 

(4.263) 

p1 = -; a2 c5 = C*+t;-t,, (4.27a, b )  

and the 0(e4"-l)-remainder term divided by ei vanishes if a > g. We shall demonstrate 
that this condition defines the lower bound of the overlap domain. 

Next we consider the matching of sR, with s:RF along the q* = const. 
characteristics. We must have 

3% 

(4.28) 

where we have used ( 4 . 2 7 ~ )  for p,. Using (4.10b), we find 

a, - B(x) L, 
d alta 
---e +O(d) as e+O,  tafixed. (4.29) 

The dominant term on the right-hand side of (4.29) arises entirely from the singular 
term &(z)/[F(f)- I] in R,. In the matching to O ( d )  this term vanishes in the overlap 
domain since a < a by definition in (4.23). Therefore, we must also have R: = 0. This 
does not mean that the singular term in (4.103) may be ignored; in the matching to 
O(s) it becomes O ( C )  and can only be matched with a corresponding term in the O(& 
transcritical solution. To demonstrate this, note that in the matching to O(s) we must 
multiply (4.29) by e-i. The dominant term on the right-hand side then becomes 
B(z)/u,  Pt, and will therefore be singular for any a > 0 if B(z )  =I= 0. Moreover, when 
written in terms of t* this term is just eb(x)/al i?:, which means that it can only be 
matched with a corresponding term in the O ( @ )  contribution of the transcritical 
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FIGURE 9. Critical solution domains. 

expansion. Once we have determined this expansion completely we shall demonstrate 
that the solution in 1x1 < f ,  where B(x)  $. 0, does indeed have such a term. 

~I . .  

The result R: = 0 in the matching region means that g: -+ 0 as t* +- 00, and 

w+alt* as t * - t -co.  (4.30) 
(4.19b) implies that  

Now, in the matching region the curves $=* = const., defined by (4.9b), have the 

x -p- la  t2 - (4.31) 
behaviour , a +?-la2 tz + O(&-I) = v* + t i  - to = const. 

We must show that the characteristics of (4;16b) (with K* = 0) have the same 
behaviour. To fix ideas, consider the case a, > 0. Because dx/dt* = w + a, t* along a 
characteristic as t* + - 00, we will always have x > t i n  this limit, i.e. matching occurs 
in the lower-right region, x > 6, t* +- 00 indicated in figure 9 and we must use (4.21) 
for the solution and the characteristic curves in this case. With use of ( 4 . 2 7 ~ )  we have 
w = a,Ea-1f2ta+~a2&2a-1i2t~, i.e. ca = 0, and 

(4.32) 

which is in agreement with (4.31) to O(d)  as long as a > t. In  effect, the matching of 
characteristics determines the constant c4 in terms of the constants associated with 
the precritical solution in the form c4 = 2a,(t0-t;-7*). A similar calculation 
confirms the matching of characteristics for the case a, < 0. This concludes the 
matching to O ( d )  and exhibits the overlap domain to be defined by t < a < t .  

We show next that the information obtained by the matching in the lower right 
of the (x, t*)-plane allows us to calculate the explicit form of the transcritical solution 
everywhere else, and we again concentrate on the case a, > 0. In particular, we shall 
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show that the (x, t*)-plane is subdivided into the six regions bounded by the vertical 
lines 2 = +$ and the two bores indicated in figure 9. 

As pointed out earlier, matching occurs as t* -+ - 00 in what has been labelled 
region I. Since the asymptotic form of ( 4 . 2 1 ~ )  as t*+-w is just w itself, the 
matching determines w in all of region I to be 

w = a,t*, on ~ - ! p , t * ~  = zo = const., (4.33a, b) 

where xo = T* +ti - to is the value of x when t* = 0. In  particular, a t  any point along 
the vertical line x = 8, t* = t,* < 0, we have w = a, t,*, and we now use this condition 
to determine the two constants c1,c2 in (4.20) for the solution in region 11. We find 

(4.34 a )  w2 = (a ,  t , * ) 2  -a, + 2a, x- P(2), 

(4.34 b) 

This can be simplified to  read 

w = 2/6(i+&,)sinh 2/6(t*-t,*)+a,t,*cosh l/6(t*-t,*), (4.34 c) 

(4.34 a) a t* 
z/6 

x = -+a,+(++&,)cosh2/6( t*- t ,* )+~sinh1/6( t*- t ,* ) .  along 

We are now in a position to demonstrate the matching of the singular term 
&(x)/[F(:) - 11 with a corresponding term in (4.34). Solving (4.343) for t*-t,*, then 
using ( 4 . 3 4 ~ )  to eliminate w gives 

(4.35) t*-t* = -1 1 6~+~, - [6(a , t : )~-6~,+  1 2 ~ , ~ - 9 B ( ~ ) ] f  
l /60g 3+a,+2/6a1t,* 

In the matching for region 11, we have x fixed : 1x1 < $ and t* -+ - co. Expanding (4.35) 
in this limit shows that t,* +- CT, also, and that 

as t*+-co. (4.36) 

Since t*-t,* + O ,  we can expand (4.344 to obtain 

x = r + r ,  2 2 1 t * 2 - 1  $lt:2+O(t,*-2), (4.37) 

and using this in ( 4 . 3 4 ~ )  gives 

w = - [(a, t*12 -@(XI + 0( t*-2) ]4  as t* +. - 00, (4.38a) 

or 3 w  
4a1t* 

w = a,t*---+O(t*-3) ast*+-m 

Therefore, using (4.22b) and (4.19b) we have 

(4.38 b) 

(4.39) 

Now, in the matching to O ( E ) ,  the singular part of eRl matches identically with the 
dominant term in (4.39), and the O(~h*-~)-terrn when divided by B becomes O(S'-~") 
and will match with a singular term proportional to e2/(F-l)3 in the precritical 
expansion to  O(e2). 
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FIGURE 10. (a) Characteristics in IzI G Q for a, = 4, (b )  a, = 2. 

We now resume our calculation of the remainder of the transcritical solution, and 
note that the characteristics (4.34d) have the following geometric property. The 
curve on which 

t,* = -- 3 + a 1 -  - * 
4 6% 

- t ow  

approaches the vertical asymptote x = -&, as t* + co. This asymptote lies to the left 
of x = -i if a, > 3 and to the right if a, Q 3, as distinguished in figures 10a and l o b .  
The family of curves originating from x = 4, t* = t,* < 0 splits into two subfamilies. 
The members of the first group arrive at x = a, t* = t:, while the remainder terminate 
a t  2 = -$, t*  = t: (see figure 10). We calculate t: by setting 2 = 4 in (4.34b) and find 

1 3 + a 1 - ~ 6 a l t , *  
t: E t,* +-log 

4 6  3+a1+2/6a,t,*’ 
(4.40) 

The above holds for all to* in the range -(2/a,)a Q t,* Q 0 if a, > 3, and all t,* in the 
range < t: < 0 if a, Q 3. It is also easy to show that tr is always positive if 
a, > 3 and t: may be negative for sufficiently small t,* if a, Q 3. To calculate t t  we 
set x = -; in (4.34b) and obtain the expression 

1 3 +al - 46a ,  t,* 
t: 3 t,*+-log 

4 6  -3++l+(6a~t ,*2-12a,)~’  
(4.41) 

which may be positive or negative. It is valid for all t,* in the range - oc) < to* < 
- (2/a,)4 if a, > 3 and - 00 < t: < t& if a, < 3. 

To calculate the solution in 111, we use (4.34) on x = 4, t* = t: to evaluate the two 
arbitrary constants c3 and c4 in (4.21). The result is 

w = a,(t*-tf)-a,t,*, ( 4 . 4 2 ~ )  

along the curves x = a+ (t* - t r )  [$a,(t* -tT) -a, t,*]. (4.42b) 
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In  a similar manner, we calculate the solution in IV to be 

w = al(t*-tt,*)-(a:t,*2-2al)t, (4.43a) 

2 = --’+ (4.433) (t* -tt,*) [&xl(t* - t:) - (a: t,*2 - 2al)t1. 

We now use the information given by the above solution on x = -4 to obtain the 

w = [(~,t:)~-a,+2a,z--(z)]t, (4.44a) 

along the curves 

solution in V as follows: 

along the curves 

or, w = 46(+,-4)sinh ~ 6 ( t * - t , * ) + ( a ~ t , * 2 - 2 a l ) i c o s h  46(t*-t ,*),  ( 4 . 4 4 ~ )  

along the curves 

x = -&.,+(&.,-))cosh ~ 6 ( t * - t 3 + [ ~ ( a ~ t : 2 - 2 a 1 ) ] ~ s i n h  d/s(t*-t;), (4.444 

2 

a1 
where t: = t:+-(a:t,*2-2a1)t. (4.45) 

Finally, we connect region VI to  region V to obtain 

where 
1 3 +a, - 4 6 a 1  t,* 

t4* s t,*+-log 
4 6  -3+a,+(6a;t,*2-12a,)i’ 

(4.46 a )  

(4.46 b) 

(4.47) 

Consider now the two bores displayed in figure 9. It follows from the solution in 

t * = o ;  x = 1  2 (4.48a, b )  

region I1 that one bore starts a t  the fixed point 

if a, > 3, and a t  the point with coordinates defined by 

1 d6-2a1t,* 
2 4 6  2/6+2a1t,*’ 

t* = t,*+-log (4.49a) 

(4.49b) 2 = -h1 -b ($+&zl) cosh .\/6(t*- t,*) +-sinh a1 t,* 46(t*-t,*), 
4 6  

1 
with t,*= -- (6 - 2a1);, (4.49c) 

2% 
if a, < 3. 

To analyse the second bore which starts near x = -t, we use the solution defined 
in I V  and obtain the following parametric form for the envelope of characteristics : 

(4.50 a )  

x = -&+t(t* -tt,*) [a,(t* -t,*) - (4aI - 8a1)i], (4.506) 
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and t: is defined in (4.41). For a given a,, this system can be solved numerically to 
minimize t* with respect to t: to obtain the starting point for the bore. For example, 
if a, = 4, we find x = -0.5055 and t* = 0.2691. 

The jump condition across these two bores is the same as that given by (3.24) of 
$3.2, i.e. 

(4.51 a )  
1 dx 

C * = @ - =  era1 1 t *-3 s(g1 *+ + g?-)I+ O(47 
dt* 

which corresponds to the following divergence form for w: 

w,, + (+*), = a, -iZ. (4.51 b)  

The behaviour of the solution, including bores in the transcritical region, will be 
exhibited in $4.4 where it is compared with numerical results. 

4.3. Postcritical expansion ; matching, ( K *  = 0) 

We have shqwn that passage through the value F = 1 introduces disturbances which 
have an O(a)  amplitude and depend explicitly on the slow scale t* = d t  that is not 
present in the precritical solution. Therefore, for (t"- f0) & d, the expansion must 
proceed in powers of EX and involve the slow scales @t, i = 1,2, . . . . Again, the results 
that are known in the transcritical region allow us to match only to O(& so we can 
define the postcritical solution only to  this order. Moreover, we can only determine 
the dependence of the O(d)-solution on the slow scale t*; the dependence of this 
solution on the slower scales requires knowledge of the higher-order terms. 

We proceed as in the precritical region by solving the problem in the coordinates 
of (2.8), then transform the results to the coordinates in (2.11) in order to carry out 
the matching. The solution has the form 

u(x,  t ; €, 0) = F ( t )  + €%i1(X, t ,  t * )  + O(s), (4.52a) 

h(x, t ;  E ,  0) = 1 +€%,(X ,  t ,  t * )  + O(E), (4.52b) 

The functions 4, and f i , may be expressed in the characteristic form 

G ,  = g(f1-8,); f i l  = f ( f ; + 8 , , .  (4.53a, b)  

As before, f, and d1 obey evolution equations which can be solved in the form 

f, = &(x-t+-t-$flt*); 8, = f(x-t++t+&t*). (4.54a, b)  

We now need to determine the functions 6 and f by matching (4.54) with the 
transcritical solution. The bore originating from the vicinity of x = -+ intersects the 
x = 4 line at some time t* = O(1). Therefore, the matching region, in which t* --f 00, 

corresponds to the upper-right domain indicated in figure 9. The reason we need only 
consider x >, t in the matching is that all the characteristics originating in regions IV 
or V eventually cross the x 2 & line. Thus, we must match the transcritical solutions 
in regions I, I11 and VI with corresponding solutions (4.54). 

First, we note that the result S: = 0 in the transcritical solution implies that 0 = 
0. Thus, we only have a 4, contribution to  u and h in the postcritical region. Consider 
now the transcritical solution in region I defined by (4.33). Since w = a,t*, we have 
g: = 0 (cf. (4.17)), along the curves ~ - & , t * ~  = xo = const. Matching g r  with 0, 
requires that we set 8, = 0. In  this event, the characteristics in the postcritical region 

(4.55) 
are the curves (cf. (4.546)) x-t++t = const. 

Using the same definition (4.23) for the matching variable t, (now t, > 0) shows that 
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the curves x - ! j ~ , t * ~  = const. match with (4.55) in the part of the overlap domain 
contained in I. 

Matching the solutions in 111 gives 

8, = const. = %,(t;+t:), (4.56 a )  

along x-t+ +t+ a,@,* + t:) t* = const. 

= - t; + to + t+&a, t:2 +a, t,* t:. (4.56 b) 

Using (4.24) in (4.563) gives the following expression valid in the matching region : 

x-+, t** +a,(t,* + t:) t* + O(e4"-') = t+&, t f z  + a, t,* t:, (4.57) 

which agrees with (4.423). 
It remains to match the solutions in region VI. We find 

8, = const. = $a,(t,*+t:), 

along x- t+ + t + a,@,* + t:) t* = const. 

( 4 . 5 8 ~ )  

= - t i  +to  +t+&, t:2 + a, t,* t:. (4.58 b) 

Using (4.24), (4.58b) takes the form 

x-&, t*2 + a,($ + t:) t* + O(e4"-') = +++, t z2  +a, t,* t:, (4.59) 

which agrees with (4,463). 
This completes the matching of the transcritical and postcritical solutions to O($) 

in the overlap domain $ < a < +. We find that the singular term B ( x ) / [ F ( f )  - 11 also 
occurs in the postcritical expansion for R to O(e). As in the case of the precritical 
solution, one can show that this term will now match with a corresponding term of 
the transcritical solution in region V. The bore condition for the postcritical solution 
is 

3 = -S(fi++fi;). 
dt* 

(4.60) 

Therefore, the correct divergence form for the evolution equation governing 8, is 

m t *  + ( - %3( = 0, (4.61) 

with f = x-t++t. Since g: = 8, in the matching, it is easily seen that bores in the 
transcritical region with speed C*, as given by (4.51 a ) ,  match with the bores defined 
above. 

4.4. Discussion and numerical verijication of results 
To illustrate the preceding results, we study the simple linear case 

P(fl = 0.3 +3.2f. (4.62) 

A second example problem where F varies nonlinearly with f is  given in Yu (1988). 
Here, F(0)  = 0.3, f = 0.21875, a, = 3.2, a2 = 0, and in the numerical results that are 
shown next, we have taken e = 0.1. The two bores displayed in figure 9 are calculated 
for the above case and start at  the points x = g, t* = 0 and x = -0.5192, t* = 0.3488. 
These bores continue to propagate into the postcritical region and determine an 
interval in x over which the dominant disturbance is to be found. 

In figure 11 we show the boundaries of the disturbances in the (2, t)-plane. In the 
precritical region we again have three disturbances of order E consisting of a 
stationary disturbance bounded by 1x1 = *$, the f-wave bounded by E* = ++ and 
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- 1  0 

t = 3.262, F =  1.34 - -- 

t = 2.1875, F = 1 

I I I --X 
1 2 3 4 

FIGURE 11. Solution domains and bores for F = 0.3+3.2[,~ = 0.1. 

propagating downstream, and the g-wave bounded by q* = ki. The g-wave initially 
propagates upstream but as F increases, it decelerates and reverses direction to 
interact with the stationary disturbance. The interaction occurs in the transcritical 
region and gives rise to an O(&) N-wave which is the dominant part of the solution 
when ( F -  1) 9 d. This N-wave is bounded by the two bores which originated in the 
transcritical region. In addition, we have the stationary disturbance and the 
continuation of the f-wave, both of which being O(e)  have not been computed in our 
postcritical solution. 

In figure 12, we exhibit the theoretical results (dashed curves) for h a t  the times 
t = 0.6, 2.1875, 3.262 and 5.685, indicated in figure 11. These results are compared 
with numerical solutions (solid curves) calculated using the algorithm in 53.1. In  all 
these results e = 0.1 and F satisfies (4.62). 

For t = 0.6 ( F  = 0.492, F* = - 1.61, t* = -0.5) we have used the precritical 
solution (4.8b) to calculate the dashed curve. We find that the maximum error is 
2.3 x which is consistent for an O(E)-theory with e = 0.1. The f-wave is 
discernible as the depression in h at the right; the stationary disturbance is the 
dominant central depression which has combined with the g-wave on the left. 

For t = 2.1875 (F = 1, F* = 0, t* = 0) we use the transcritical solution and, as seen 
from figure 11, the f-wave is just to  the right of the calculation range and does not 
appear in the numerical results. This time corresponds to the x-axis of figure 9. Thus, 
the bore at x = t has just emerged. To the right of this bore the solution is zero, and 
to its left the solution is in region I1 and given by (4.34) up to  x = -4. At this point, 
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5.685 

3.262 

2.1875 

h - 0.6 

I I I I I I 

-4 -2 0 2 4 6 

FIGURE 12. Free surface at various t for B = 0.1,F = 0.3+3.2f. The solid curve shows the 
numerical result. 

X 

we encounter the discontinuity in slope as we switch over to the solution in region 
IV  for x < -+ (see figure 9). The maximum error for this time is 0.7 x 10-1 = O(E)  and 
is consistent with an O(d)-theory. 

For t = 3.262 (F = 1.34,F* = l.OS,t* = 0.34), (F-l)/d = 1.1 = O(1).  Hence we 
still use the transcritical solution. As indicated in figure 11, the left bore has just 
emerged a t  this time and both bores are well defined in our results. The maximum 
error for this case is 1.7 x lo-' = O(s)  and occurs near the right bore. The error near 
the left bore is 0.03 and the maximum error away from the bores is 0.02. 

The top curve illustrates the postcritical solution. Here t = 5.685, i.e. F = 2.12 and 
( F -  1)/@ = 3.54 which may be regarded as large (note that for E = 0.1,s; = 0.316, 
therefore a factor of three may be regarded as large). Now, we find a well defined N- 
wave that is accurately described by our results of $4.3; the maximum error is 
2.0 x lo-' and occurs near both bores. These errors are entirely due to the errors in 
the bore location. The maximum error for the bore location is 0.8 x lo-' = O(e)  and 
occurs a t  the left bore. This is consistent with our O ( d )  theory. In the numerical 
result we note, in addition, the O(s)-stationary disturbance over the interval 
1x1 < 4 that we have not calculated. (We also have not calculated the O(e)  f-wave 
which is beyond the right boundary of this figure.) 

In conclusion, we have demonstrated the accuracy of our asymptotic theory to the 
orders worked out for the simple linear variation in F as defined in (4.62). More detail 
comparisons, including examples with a, 9 0 can be found in Yu (1988). The 
principal result of this analysis is that as F passes through the critical value, 
disturbances of order-s amplify to form an N-wave having an O(d)-amplitude and 
slowly increasing wavelength. 

The authors would like to express their grateful thanks to the National Science 
Foundation, who supported the project under the Grant No. DMS-8606198. 
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